2 minute read

DenseNetwork 구현 및 학습

import tensorflow as tf
import numpy as np

하이퍼 파라미터

EPOCHS = 10

DenseUnit 구현

class DenseUnit(tf.keras.Model):
    def __init__(self, filter_out, kernel_size):
        super(DenseUnit, self).__init__()
        self.bn = tf.keras.layers.BatchNormalization()
        self.conv = tf.keras.layers.Conv2D(filter_out, kernel_size, padding='same')
        self.concat = tf.keras.layers.Concatenate()
    
    def call(self, x, training=False, mask=None): # x : (Batch, H, W, Ch_in)
        h = self.bn(x, training=training)
        h = tf.nn.relu(h)
        h = self.conv(h) # h : (Batch, H, W, filter_output)
        return self.concat([x, h]) # (Batch, H, W, (Ch_in + filter_output))

DenseLayer 구현

class DenseLayer(tf.keras.Model):
    def __init__(self, num_unit, growth_rate, kernel_size):
        super(DenseLayer, self).__init__()
        self.sequence = list()
        for idx in range(num_unit):
            self.sequence.append(DenseUnit(growth_rate, kernel_size))

    def call(self, x, training=False, mask=None):
        for unit in self.sequence:
            x = unit(x, training=training)
        return x

Transition Layer 구현

class TransitionLayer(tf.keras.Model):
    def __init__(self, filters, kernel_size):
        super(TransitionLayer, self).__init__()
        self.conv = tf.keras.layers.Conv2D(filters, kernel_size, padding='same')
        self.pool = tf.keras.layers.MaxPool2D()

    def call(self, x, training=False, mask=None):
        x = self.conv(x)
        return self.pool(x)

모델 정의

class DenseNet(tf.keras.Model):
    def __init__(self):
        super(DenseNet, self).__init__()
        self.conv1 = tf.keras.layers.Conv2D(8, (3, 3), padding='same', activation='relu') # 28 x 28 x 8
        
        self.dl1 = DenseLayer(2, 4, (3, 3)) # 28 x 28 x 16
        self.tr1 = TransitionLayer(16, (3, 3)) # 14 x 14 x 16
        
        self.dl2 = DenseLayer(2, 8, (3, 3)) # 14 x 14 x 32
        self.tr2 = TransitionLayer(32, (3, 3)) # 7 x 7 x 32
        
        self.dl3 = DenseLayer(2, 16, (3, 3)) # 7 x 7 x 64
        
        self.flatten = tf.keras.layers.Flatten()
        self.dense1 = tf.keras.layers.Dense(128, activation='relu')
        self.dense2 = tf.keras.layers.Dense(10 , activation='softmax')
        
    def call(self, x, training=False, mask=None):
        x = self.conv1(x)
        
        x = self.dl1(x, training=training)
        x = self.tr1(x)
        
        x = self.dl2(x, training=training)
        x = self.tr2(x)
        
        x = self.dl3(x, training=training)
        
        x = self.flatten(x)
        x = self.dense1(x)
        return self.dense2(x)

학습, 테스트 루프 정의

# Implement training loop
@tf.function
def train_step(model, images, labels, loss_object, optimizer, train_loss, train_accuracy):
    with tf.GradientTape() as tape:
        predictions = model(images, training=True)
        loss = loss_object(labels, predictions)
    gradients = tape.gradient(loss, model.trainable_variables)

    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    train_loss(loss)
    train_accuracy(labels, predictions)

# Implement algorithm test
@tf.function
def test_step(model, images, labels, loss_object, test_loss, test_accuracy):
    predictions = model(images, training=False)

    t_loss = loss_object(labels, predictions)
    test_loss(t_loss)
    test_accuracy(labels, predictions)

데이터셋 준비

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train[..., tf.newaxis].astype(np.float32)
x_test = x_test[..., tf.newaxis].astype(np.float32)

train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

학습 환경 정의

모델 생성, 손실함수, 최적화 알고리즘, 평가지표 정의

# Create model
model = DenseNet()

# Define loss and optimizer
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()

# Define performance metrics
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

학습 루프 동작

for epoch in range(EPOCHS):
    for images, labels in train_ds:
        train_step(model, images, labels, loss_object, optimizer, train_loss, train_accuracy)

    for test_images, test_labels in test_ds:
        test_step(model, test_images, test_labels, loss_object, test_loss, test_accuracy)

    template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
    print(template.format(epoch + 1,
                          train_loss.result(),
                          train_accuracy.result() * 100,
                          test_loss.result(),
                          test_accuracy.result() * 100))
    train_loss.reset_states()
    train_accuracy.reset_states()
    test_loss.reset_states()
    test_accuracy.reset_states()
Epoch 1, Loss: 0.11307405680418015, Accuracy: 96.75333404541016, Test Loss: 0.05511000007390976, Test Accuracy: 98.29000091552734
Epoch 2, Loss: 0.057570938020944595, Accuracy: 98.4383316040039, Test Loss: 0.0530952550470829, Test Accuracy: 98.3499984741211
Epoch 3, Loss: 0.043755121529102325, Accuracy: 98.76333618164062, Test Loss: 0.05816405266523361, Test Accuracy: 98.44999694824219
Epoch 4, Loss: 0.04333307594060898, Accuracy: 98.77333068847656, Test Loss: 0.0660046860575676, Test Accuracy: 98.61000061035156
Epoch 5, Loss: 0.030361121520400047, Accuracy: 99.1500015258789, Test Loss: 0.12039968371391296, Test Accuracy: 97.43000030517578
Epoch 6, Loss: 0.03443685546517372, Accuracy: 99.04999542236328, Test Loss: 0.04854564368724823, Test Accuracy: 98.68000030517578
Epoch 7, Loss: 0.03254585340619087, Accuracy: 99.19833374023438, Test Loss: 0.054437797516584396, Test Accuracy: 98.8699951171875
Epoch 8, Loss: 0.02431321144104004, Accuracy: 99.3116683959961, Test Loss: 0.06114092096686363, Test Accuracy: 98.6199951171875
Epoch 9, Loss: 0.027243511751294136, Accuracy: 99.29833221435547, Test Loss: 0.07321697473526001, Test Accuracy: 98.62999725341797
Epoch 10, Loss: 0.023852670565247536, Accuracy: 99.40166473388672, Test Loss: 0.06338458508253098, Test Accuracy: 98.86000061035156